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ABSTRACT abnormal instances. Novelty detection has potential appli- 

Support Vector Machines (SVMs) have been widely adopted 
for classification, regression and novelty detection. Recent 
studies [l ,  21 proposed to employ them for cluster analy- 
sis too. The basis of this support vector clustering (SVC) is 
density estimation through SVM training. SVC is a boundary- 
based clustering method, where the support information is 
used to construct cluster boundaries. Despite its ability to 
deal with outliers, to handle high dimensional data and arbi- 
trary boundaries in data space, there are two problems in the 
process of cluster labelling. The first problem is its low ef- 
ficiency when the number of free support vectors increases. 
The other problem is that it sometimes produces false neg- 
atives. In the present paper, we propose a robust cluster as- 
signment method that harvests clustering results efficiently. 
Our method uses proximity graphs to model the proximity 
structure of the data. We experimentally analyze and illus- 
trate the performance of this new approach. 

KEYWORDS: Clustering, Support Vector Machines, Prox- 
imity Graph. 

1. INTRODUCTION 

Kemel methods have become an increasingly popular tool 
for machine learning tasks such as classification, regression 
and novelty detection [5, 101. Support Vector Machines 
(SVMs) [3, 41 have been successfully applied to a number 
of applications, and they exhibit good generalization per- 
formance and desirable properties, such as invariance under 
symmetries and robustness in the presence of noise. In addi- 
tion to their accuracy, a key characteristic of SVMs is their 
mathematical tractability and geometric interpretation. 

While SVMs have been widely adopted as supervised 
learning methods with labeled data, they have also been 
used for the exploration of unlabeled data (cf., [l, 8, 91). 
Novelty detection and cluster analysis using SVMs are ex- 
amples for learning unlabeled data. For many real-world 
problems, the task is not to classify but to detect novel or 
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cations in many problem domains such as condition moni- 
toring and medical diagnosis. Recent studies [l, 21 adapted 
SVMs for cluster analysis. One possible approach of nov- 
elty detection is one-class classification where the aim is 
to model the support information of a data distribution. The 
task is to find a hypersphere with minimal radius R and ten- 
ter a' that contains most of the,data points. Novel test points 
are then identified as those that lie outside the boundary of 
this hypersphere. As a by-product of this algorithm, a set 
of contours that enclose the data points is obtained. These 
contours can be interpreted as cluster boundaries and link- 
ages between each pair of data items can be estimated. The 
SVC clustering algorithm [l ,  21 is able to detect arbitrary 
shape clusters with a hierarchical structure in high dimen- 
sional data. It provides a way to deal with outliers and by 
using kemel methods, explicit calculations in feature space 
are not necessary. Despite these advantages, the algorithm's 
main drawback is its high time complexity. 

According to Ben-Hur et al. [2] ,  there are two main steps 
in the SVC algorithm, namely SVM training and cluster la- 
beling. The SVM training part is responsible for novelty 
model training. The cluster labeling part checks the con- 
nectivity for each pair of points based on cut-off criteria ob- 
tained from the trained SVMs. The time complexity of the 
cluster labeling part is O(n2m), where n is the number of 
data items, and m << n is the number of sampling points on 
each edge which is usually a constant between 10 and 20. 
With our implementation of the clustering algorithm of [2] ,  
we found that the SVM training part takes much less time 
than the cluster labeling part. Therefore the time complex- 
ity of SVM training part is not the main concern of support 
vector clustering. But, the computation of the cluster label- 
ing part is the critical issue. It has extremely demanding 
CPU-requirements for large data sets. The heuristic intro- 
duced by Ben-Hur et al. [l] lowers the linkage estimations 
in the cluster labeling part. This approach does not check 
the linkages between all pairs of data items, but only those 
between points and support vectors. This improved the effi- 
ciency of the cluster labeling part. Its time complexity was 
lowered to O((n-nb,,)n&,m), where nbsv is the number of 
bounded support vectors, and n,, is the number of free sup- 
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port vectors. However, if n,, is over 0.05n for m == 20 or 
0.10n for m = 10 (these are common cases), the timle com- 
plexity of cluster labeling is O((n - nbs,)n). On thle other 
hand, our experiments show that such a heuristic for linkage 
estimation can sometimes fail. The observation is that adja- 
cencies between points are only kept within neighborhoods 
in the same cluster in feature space. It is more likely that a 
point within a cluster has linkages to its neighbors, but not to 
the boundary points (support vectors) of the cluster. Check- 
ing only adjacencies with support vectors may generate a 
number of unlinked data points (we refer to these as false 
negatives) and makes the clustering results less meaningful. 

In the present paper we propose an efficient cluster as- 
signment method to harvest clusters. Our approach con- 
structs appropriate proximity graphs to model a data set. In 
these graphs, vertices represent data points and edges con- 
nect pairs of points to model their proximity and adjacency, 
After the SVM training process, we adapt the obtained cut- 
off criteria (i.e., R) to estimate the edges of a proximity 
graph. This method avoids redundant checks in a complete 
graph and also avoids the loss of neighborhood information 
as it can occur when only estimating adjacencies to sup- 
port vectors. The experiments demonstrate that our method 
of cluster labeling can discover meaningful and valid clus- 
tering results. The time complexity of our method is only 
O(mn log n), where n is the size of data set and ?n is the 
number of sampling points on each edge. 

The rest of this paper is organized as follows: Section 2 
reviews previous work related to proximity graph cluster 
analysis. Section 3 presents the main ideas of our approach. 
In Section 4 we discuss experimental results and conclude 
the paper with final remarks in Section 5. 

2. RELATEDWORK 

Recently, Estivill-Castro and Lee [6,7] proposed boundary- 
based clustering methods using proximity graph modelling. 
Proximity and density information modelling of :1D point 
data using Delaunay Diagrams is a powerful exploratory 
and argument free clustering algorithm for geograplical data 
mining [6]. The main idea behind this approach is to detect 
the sharp density changes at potential cluster boundaries. In 
their approach, the main principle is modelling proximity 
and topology in terms of proximity graphs. 

Typically, clustering methods use a similarity concept 
(e.g., Euclidean distance) to measure proximity between data 
objects. Even in high-dimensions, proximity is critical to 
cluster analysis. In proximity graphs, vertices represent data 
points and edges connect pairs of points to model proximity 
and adjacency. Despite of the fact that the point is the most 
primitive data object, it is not easy to define point proximity 
as a discrete relation. To best describe proximity between 
data points, a common family of proximity graphs was in- 

vestigated and compared for different modelling considera- 
tions [7]. These proximity graphs include for example De- 
launay Diagrams (DD), -Minimum Spanning Trees (MST) 
and k-Nearest Neighbors (k-NN). By choosing appropriate 
underlying proximity graphs the expected time complexity 
is sub-quadratic for data of all dimensions. 

Using SVMs, another boundary-based clustering method 
was proposed in [1, 21 (we call it SVC). This approach em- 
ploys support vectors to construct cluster boundaries. Its 

. principle i s  novelty detection [SI which is sometimes also 
called data domain description [9]. Domain description 
produces a description of a given set of objects. This de- 
scription should cover the class of given objects, and ideally 
reject other possible objects in the object space. Generally, 
novelty detection can characterize estimating functions of 
the data that tell something interesting about the underly- 
ing distribution. Rather than finding a real-valued function 
for estimating the density data, it models the support of the 
data distribution through a binary function, such that most 
of data will live in the region where the function is non-zero 
(its support). One approach to domain description which is 
inspired by SVMs is constructing a hypersphere with min- 
imum volume (or minimum radius) containing all objects, 
In the following we summarize the main points of the clus- 
tering approach proposed in [1, 21: 

Kernel techniques 
SVC is an unsupervised learning technique that is kemel- 
ized. Assume given is a set of n data points {c} C_ X ,  
with X C Rd, the data space. To formulate a support vector 
description of this data set, a nonlinear mapping q3 is em- 
ployed to map X into some high dimensional feature space. 
The next step is to find the smallest enclosing hypersphere: 

where R is the radius, a' is the center and & are some slack 
variables allowing for soft boundaries (some data points can 

. be allowed to lie outside the sphere). The problem (1) is 
usually solved in its dual by introducing the Lagrangian and 
a regularization constant C in the penalty term, 

L = R2 - Ci(R2 + ti - I/$($) - a'))'))~i 
(2)  

where ai 2 0 and pi 2 0 are Lagrangian multipliers, and 
C ti is a penalty term. Also the Karush-Kuhn-Tucker 
condition allows the problem to be rewritten as 

-C&pi + CCti- 

max L = xi ai$($)2 - aiaj$($)+(Zj) 
subjec t toOIa i  < C , C a i = l , i = l , . . .  ,n. 

Following the SVMs method, we use a kernel representation 
k ( h ,  .'j) = $(Zi) . $(i?j). Eq. (3) is now written as: 

(3) 

(4) 
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The Lagrangian multipliers ai can be obtained by opti- 
mizing Eiq. (4). Only those points with non-zero ai satisfy 
Eq. (1) as equality. These points lie on the boundary of the 
sphere and are called Support Vectors (SVs). Points with 
ai = C have hit the upper bound for the radius and lie out- 
side the sphere. These points are called Bounded Support 
Vectors (BSVs), and are treated as noise. 

One of the key features of kemel methods is that they 
do not require an explicit calculation of the feature map 4 
but only use the values of the dot products between mapped 
patterns. For clustering purposes, we followed [l,  21 and 
used Gaussian kernels kq(Zi ,  Zj) = eqllzi-zj 11' with width 
parameter q = -1/(2a2). According to [9] polynomial ker- 
nels do not yield tight boundaries. 

Construction of cluster boundaries 
Support vectors can be used to describe the hypersphere in 
feature space. For each point 3, the distance of its image 
4(Z) to the center of the hypersphere is given by 

~ ~ ( 5 )  = ~(z,z) - ~ C C U ~ ~ ( Z , Z ~ )  + C a i a j k ( ~ i , ~ j ) .  
2 i , j  

The radius R of the sphere can be obtained by calculat- 
ing the distances Ri = {R(&) 1 Zi is a support vector) of 
the support vectors from the center of the hypersphere (in a 
practical implementation the average of these distances can 
be used). 

Cluster boundaries can be constructed by a set of con- 
tours that enclose the points in data space {2 I R(Z) = R}. 
Thus, SVs lie on cluster boundaries, BSVs are outside, and 
all other points lie inside clusters. 

Clustering-labeling 
The cluster description itself does not differentiate between 
points that belong to different clusters. To do this, an adja- 
cency matrix Aij is defined based on geometric observation: 
given a pair of data points that belong to different clusters, 
for any path in data space connecting them, the correspond- 
ing path in feature space must have an intersection with the 
outside of the hypersphere. For each pair of points Zi and 
Zj, Aij takes a binary value. 

Aij  = 1, if R(Zi + A(Zj - &)) 5 R, VX E [0,1]; { 0, otherwise. 

Clusters are now defined as the connected components 
of the graph induced by A. Calculating Aij for points Zi 
and Zj is implemented by sampling a number of, say m 
points on the line segment between the two points (where 
m is usually chosen between 10 and 20). The two cluster 
labeling strategies of Ben-Hur et al. [I ,  21 are described in 
Cluster Labeling Strategy 1 and 2 below. 

Cluster Labeling Strategy 2 is faster than Strategy 1. 
However, there are two issues with Strategy 2. First, when 

Cluster Labeling Strategy 1 (CG) 
Calculate Aij for each pair of points & and j in data space. 
This results in using the complete graph, denoted by CG, to 
model adjacency Ai?. It takes O(n2m) time. 

Cluster Labeling Strategy 2 (SVG) 
Calculate Aij only for pairs of points Zi and Zj, where Zi 

or ?j is a support vector. This results in a subgraph of CG, 
which is referred to as SVG. It takes O((n  - nbsv)n;,m) 
time, where nb,, is the number of BSVs and n,, is the num- 
ber of free SVs. 

n,, is greater than 0.05n - O.ln, its time complexity is still 
quadratic. Second, points in data space that are close neigh- 
bors are more likely to belong to the same cluster. However, 
checking only linkages to support vectors does not neces- 
sarily take this into account and can produce unlinked data 
points of close proximity. This can make clustering results 
less meaningful. 

In the next section, we will extend the above two types 
of boundary-based clustering methods, and present our ap- 
proach to SVC through proximity graph modeling. In our 
method, cluster boundaries are described by a set of SVs, 
and cluster labeling is based on proximity graph modelling. 
The time complexity of our method is only O(mn1ogn). 
Characteristics of several different proximity graphs will be 
analyzed and contrasted. 

3. SUPPORT VECTOR CLUSTERING THROUGH 
PROXIMITY GRAPH MODELLING 

SVC through proximity graph modelling extends the clus- 
tering method of [ 1,2] with the concept of proximity graph 
modelling (cf. e.g., [6, 71). Our method consists of three 
steps, that will now be explained in detail. 

3.1. SVM-training for detecting cluster structure 

The number of SVs and BSVs affects the cluster structure, 
which therefor can be controlled by the SVM training pa- 
rameters q and C. As the width q of the Gaussian kernels in- 
creases, the number of SVs (n,,) increases, the shape of the 
cluster boundaries becomes rougher, and the contours tend 
to split up (cf., the boundaries of white regions in Fig. l(a)- 
(d) below). On the other hand, the number of BSVs ( n b s v )  

can be controlled by C, .more precisely by nbsv < 1 /C .  
That is, if C 2 1, there are no BSVs. To allow for BSVs, 
one should set C < 1 .  Instead of using C it is more nat- 
urally to work with the parameter p = l/nC, which rep- 
resents an upper bound for the fraction of BSVs. The pa- 
rameter q determines the scale at witch the data is probed, 
and p decides the softness of the boundary [ 11. Fig. 1 shows - 
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a 285-points data set and the changes of cluster boundaries 
in dependence to different settings of q and p, which are 
selected experimentally as in [l]. 

(a) p = 1.5 (b) p = 3.5 (c) p = 5.5 (d) '1 = 7.5 
p = 0.05 p = 0.05 p = 0.10 p = 01.10 
nSv = 22 n,, = 26 n,, = 37 nsv == 40 
nbsv = 10 nbsv = 6 nbsz, = 19 rbbsv = 17 

Figure 1: The clusters are represented by white iregions. 
Their boundaries and number vary with q and p. Encircled 
points are the resulting SVs and BSVs. 

3.2. Cluster labeling using proximity graphs 

After SVM training, the radius R of the hypersphere can be 
used as a cut-off criterion to check the connectivity between 
data points. Under certain cut-off conditions, some points 
will become non-connected. The clusters are the connected 
components induced by Aij. Note that a connected compo- 
nent can also be identified by a spanning tree, which pro- 
duces a much smaller number of edges than the CG. Conse- 
quently, Cluster Labeling Strategy 1 results in testing many 
redundant edges. The sparse graph SVG in Cluster Label- 
ing Strategy 2 does not decode neighborhood information 
exactly, and sometimes yields trivial clusters. Therefore, we 
propose a new cluster labeling strategy below to overcome 
the disadvantages of Cluster Labeling Strategy 1 arid 2. 

they are close to each other according to some proximity 
measure. Near-by points are naturally more likely to be in 
the same cluster than points that are far away. Thus, cluster 
labeling with a proximity graph strategy is a good heuristic 
to reduce the time of testing linkages. We will discuss three 
types of proximity graphs for cluster assignment. These are 
Delaunay Diagram (DD), Minimum Spanning Tree (MST), 
and k-Nearest Neighbors (k-NN) [6,7]. They can be derived 
by considering different aspects of proximity and topology. 
DD represents a "is-neighbor" relation. The MST is based 
on the local closeness of data points. It is a subgraph of 
DD, and encodes less proximity information. k-NN is based 
on distance concepts. Fig. 2 shows the construction of a 
variety of proximity graphs for cluster assignment. We used 
the Leda' and A"* libraries to construct these proximity 
graphs. 

(a) data points (b) CG (c) SVG 

Figure 2: Various proximity modelling graphs. In (c), en- 
circled points are SVs and the white region is the pre-image 
of the hypersphere in feature space. 

Cluster Labeling Strategy 3 (Proximity graphs) 
We model the data with an appropriate proximity graph that 
reflects the data distribution and incorporates proximity and 
topology information. The idea is to calculate coefficients 
of the adjacency matrix Aij only for pairs of & and Zj, 
where 2i and Zj are linked by an edge Eij in a proximity 
graph. Actually, the adjacency matrix Aij is not held explic- 
itly in the memory, but encoded in the proximity graph. The 
problem is to find the connected components in the graph by 
exploring the edges induced by A,. We perform the same 
sampling strategy for computation of Aij as in [l, 21. All 
edges in the current proximity graph are called candidate 
edges. We refer to an edge Eij as active edge if .4ij = 1, 
and as passive edge if Aij = 0. An active path in the prox- 
imity graph will be formed if every edge in the path is an 
active edge. A connected component is equivalent to an ac- 
tive path. 

3.3. Cluster harvest 

Without going into the mathematical details, the cluster har- 
vest procedure is justified by the empirical observation that 
clusters correspond to connected components of edges, i.e. 
active paths. Passive edges are not of interest, and they will 
be removed from the proximity graph. After the removal of 
passive edges, the task of cluster harvest becomes recogniz- 
ing all active paths formed. Once active edges have been 
determined, a classical algorithm like Depth-First-Search 
(DFS) can be used for collecting connected components. 
Note that DFS has complexity proportional to the number of 
edges in the proximity graph. Pseudo code for cluster har- 
vest is shown in Algorithm 4. To avoid trivial clusters, some 
clean-up work is necessary. We treat a cluster with a small 
number of points under a threshold (say 3) as noise. BSVs 

In a proximity graph, points are connected by edges if 
http://www.mpi-sb.mpg.de/LEDA/ 
http://www.cs.sunysb.eduTalgon~implemen~~/implement.sh~ 
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are included in the closest cluster as suggested in [ l ,  21. 
Fig. 3 demonstrates the whole procedure of SVM clustering 
for the case of DD modelling. 

Algorithm 4 (Cluster Harvest) 
function cZzlsterHarwest(G:Graph; S:Sets) 

{input G: Subgraph after cluster labeling} 
{output S: Set of clusters} 
Var 

w: Node; 
C: Set; {A set of points in one cluster} 

while (w := G.chooseNode()) 
begin 

C.cZear(); 
DFS(G, w, C); {w is moved from G to C} 
S.add( C ) ;  

end while 
end 

Figure 3: Procedure of SVC using DD modelling. (a) A 
set of points. (b) DD modelling. (c) SVM training result. 
(d) Active paths after labeling. (e) Final result after cluster 
harvest. 

field of computational geometry has developed O(n log n) 
time algorithms to construct DD, MST and k-NN in spaces 
of various dimensions. Therefore, all proximity graphs pre- 
sented here can perform 2D cluster labeling and harvest in 
O(n log n) time. This is remarkably efficient compared to 
the quadratic time requirements of CG and of SVG. The 
experimental results displayed in Fig. 4 illustrate that our 
approach outperforms CG and SVG cluster labeling. We 
first generated a data set with 1,000 points based on a mix- 
ture model. From this data set, we sampled five subsets with 
100, 200, 400, 600 and 800 points, respectively. Then we 
performed SVC on these subsets using various cluster la- 
beling mechanisms. After empirical test with different val- 
ues, we set parameters q = 0.20 andp = 0.10 to train the 
SVMs. The results shown in Fig. 4 include the overall time 
requirements for proximity graph construction, cut-off cri- 
terion computation, cluster labeling and harvest. 

When we move to high-dimensional data sets, k-NN and 
MST graphs are more attractive, since the number of edges 
of these graphs remains linear in n. This makes proximity 
graph modelling scalable to high-dimensional data for sup- 
port vector cluster analysis. 
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4. PERFORMANCE EVALUATION 

In this section, we present results of experiments which com- 
pare and evaluate the performance of different cluster la- 
belling methods. We demonstrate empirically the robust- 
ness and efficiency of our approach of cluster labeling with 
proximity graphs. The LibSVM3 library has been used in 
the performance evaluation. 

4.1. Time complexity 

Given is a data set of n points (5)  X, with X C Ytd ,  the 
data space. The number of edges in DD is linear in size n for 
2D (3n-6 at most), but it is quadratic in size for 3D. Other 
proximity graphs are linear in size for all dimensions. The 
number of edges in MST is n - 1. For k-NN, O(kn) is the 
upper bound. Thus, walking on edges for cluster assignment 
and cluster harvest takes O(n)  time. On the other hand, the 

3http://www.csie.ntu.edu.tw~cjIinAibsvm/ 

Figure 4 CPU time comparison of various cluster label- 
ing. mechanisms. Slowest is the result using CG which is 
quadratic in the number of points n and fastest is the result 
using MST which is n log n. 

4.2. Clustering quality 

When applying different proximity graphs to model data for 
support vector clustering, they may produce different re- 
sults. We take the result of CG as reference against which 
we compare the other cluster labeling methods. Our experi- 
ments show, DD works as good as CG. This is because, as a 
good spanner, DD holds sufficient interconnections. In con- 
trast, as a subgraph of DD, MST encodes much less prox- 
imity information. Some linkages between neighbors in DD 
have been lost in MST. Despite its speed, MST is a fragile 
clustering method. Interestingly, k-NN with appropriate IC 
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also reports good results. The experiments indicate that k- 
NN (with IC > 3) captures satisfactory proximity informa- 
tion for cluster labeling. Here the argument IC does not need 
to be tuned as carefully as in [7], because the purpose of 
proximity graph modelling in our study is only for cluster 
labeling, but not for the computation of the cut-off criterion. 
As mentioned before, SVG is a heuristic to produce a sparse 
graph to simplify cluster labeling. However, it sometimes 
can produce false negatives and make the clustering result 
less meaningful. This situation can occur when the parame- 
ter p is high. In this case, most SVs turn out to be BSVs and 
there are only a few free SVs left. The data points lacking 
of support information (i.e. they can not connect to SVs), 
become false negatives. Fig. 5 illustrates cluster labeling re- 
sults from different labeling methods for a data set shown in 
Fig. 5(a). Fig. 5(b) is the result of CG. Fig. 5(c) shows that 
SVG strategy produces false negatives. In contrast, with 
consideration of neighborhood relationship, the proximity 
graph modeling approaches, as shown in Fig. 5(d, I:, f), do 
not yield false negatives. 

(a) data points (3) CG 

Clctiuc Path k t i u e  Path 

(e) 4-NN (f, MST 

Figure 5: Comparison of clustering results using Ilifferent 
labeling methods with parameters p = 0.5, q = 2.75 for 
SVM training. Note that, for better recognition, the two 
clouds of BSVs have been highlighted by additional bound- 
ary lines. The cloud in the upper right comer has approxi- 
mately the shape of an annulus. 

5. CONCLUSION 

We extended the support vector clustering method, and ap- 
plied proximity graph modelling to the cluster labeling part. 
Our experiments demonstrated that the approach robustly 
and efficiently performs cluster assignment, and makes sup- 
port vector clustering scalable to large data sets. 

The impact of our improvement from quadratic to n log n 
time is also reflected if we attempt parallel implementation. 
For example, such parallel implementation of our approach 
would be logarithmic in n processors, while the previous 
approaches would only be linear on n processors. 
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